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systems and its application to idealized 
magnetohydrodynamics 
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Department of Physics, Graduate School of Science, Universiry of Tokyo, 7-3-1 Hmgo. 
Bunkyo-ku, Tokyo 113. Japan 

Received 24 October 1994 

Abstract. This paper presents a general theorem which enables description of Lie-Poisson 
systems for semi-direct product groups in terms of Riemannian geometry. The method employed 
is unique in that it changes the non-ymdmtie right- or left-invariant Hamiltonian to the quodrntic 
form in a right- or left-invariant I-form on the corresponding group by removing the respective 
invatlance, which obtains the Riemnian  melric and its induced Riemannian (Levi-Civita) 
comection. The resultant geodesic equation proves to be equivalent to the equation of motion. 
while the corresponding Jambi equation determines its instability. In addition, this method is 
applied to ideaiized magnetohydrodynamics having isentropic flow, with a simple example being 
provided thal considers the motion of an isentropic gas with no magnetic field present. 

1. Introduction 

This paper shows how LiePoisson systems for semi-direct product groups can be described 
in terms of Riemannian geometry, and how such a description can be applied to idealized 
magnetohydrodynamics (MHD) when considering only non-dissipative or isentropic flows. 
The method employed uses knowledge of the geodesics on finite- and infinite-dimensional 
Lie groups to study the instability of the motion in these systems, and is unique in that it can 
be used to obtain a Riemannian metric that changes the non-quudrutic right- or left-invariant 
Hamiltonian to a quudrntic form by removing the respective invariance. 

Let D J M )  be the Lie group of the Cm volume-preserving diffeomorphisms of a compact 
oriented N-manifold M which preserve the volume element U, = d-d"l A dxz A 

. . . A &,v at each x E M for a local coordinate ( ~ 1 . ~ 2 , .  . . , X N )  near x E M ,  where 
gii(x) is the metric tensor on M for x E M .  Arnold (1966) showed that the motion of 
a rigid body and that of an ideal homogeneous incompressible fluid (I-fluid) on M can 
be represented as the geodesics on SO(3) and on D v ( M ) ,  respectively. Ebin and Marsden 
(1970) subsequently developed a detailed functional analytic treatment of Arnold's approach 
by considering the ambient Lie group D ( M )  of all Cm diffeomorphisms of M (for further 
study see Bao et ul (1993), and for an alternative formulation see Ono (1994)). Arnold 
(1966) additionally presented a theorem declaring that the right- or left-invariant metric 
obtained from a quadratic left- or right-invariant Hamiltonian makes the equations of motion 
determined by this Hamiltonian equivalent to the geodesic equation on the corresponding 
group. 

By generalizing Arnold's theorem such that it allows the metrics obtained from the 
Hamiltonians to violate the right-/left-invariant property, the theorem is shown to include 
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non-quadratic right-/left-invariant Hamiltonians. This new theorem is able to prove that the 
equation of motion for a LiePoisson system is equivalent to that of a geodesic on a certain 
group (see Marsden and Weinstein (1983) and Marsden er al (1984) for the Hamiltonian 
structures of Lie-Poisson systems). Thus, by means of the resultant sectional curvatures, 
we can investigate the instability of the system (for a completely different approach using 
symplectic connections, see Marsden et al (1991)). It should be noted that an example of 
the theorem presented was shown by Marsden (1976) for the motion of a non-homogeneous 
I-fluid in which a non-invariant metric was employed to obtain its motion as the geodesic 
on Du(M). 

Next, MHD fluid motion is shown to be the geodesic on a semi-direct product group 
Z.(M) of 'D(M),  that is the group of all Cm diffeomorphisms of M, with the space h ' ( M )  
of 1-Forms on M and the space +(M) of Cm functions on M, i.e. 

Z ( M )  = ' D ( M )  x A1(M) x F(M) 

hence leading to the corresponding curvature. In addition, a simple example is given that 
considers the motion of an isentropic gas with no magnetic field present. 

2. General method 

2.1. Formulation 

Let D be a finite- or infinite-dimensional Lie group and g be the Lie algebra of D, while 
p : D + Aut(V) and p.t : C2 -+ Aut(V.t) are the left Lie group representations of C2 in 
vector spaces V and VL and p' : g -+ End(V) and p i  : g -+ End(VL) are the induced Lie 
algebra representations. Now, we define the semi-direct product S of g with V and VL by 
introducing the following operation * for OI = (&, U ] ,  U:) ,  02 = (q5z, U?, U;) E S, i.e. 

01 * 0 2  = ( h 4 2 , U I  + p ( m 2 . u :  + PL(@l)U29. (2.1) 

Letting s be the Lie algebra of S, then the Lie bracket on s is defined for VI = (UI , 01 , o1 1. ), 
vz = (V;l,wrO:) E S as 

(2.2) [VI, V2l = ( [ U l ,  uzl. P'(Ul)WZ - P'(VZ)Ol ,  P;(ul)w: - P;(uz)O:). 

For a function F ( 0 )  E E4 of 0 E 9, the following two types of derivatives can be obtained 

where VI:, VI; E T*S in (2.3) and (2.4) represents the left- and right-invariant vectors at 
@ E S, respectively. The terms of VI: or VI; will be abbreviated as VI;. In the subsequent 
formulation, the abbreviation i represents + and - signs when the left- and right-invariant 
fields (respectively) are considered. Thus, the relation between the commutation bracket of 
left- and right-invariant vectors and the Lie bracket of the corresponding elements of the 
Lie algebra can be obtained as [Vll;, Vzl:l =*[VI, Vzll; and [VII:, Vzl;l =O.  
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If (p,  V )  denotes the natural pairing between V E s and /* E s*, being the dual space 
of s, the left- or right-invariant 1-form pi: E T:S corresponding to p E s* can be defined 
by introducing the following natural pairing with VI$ E T&? 

(PI:. VI$) = (P? V ) .  (2.5) 

Let s, be the Lie algebra of the semi-direct product group S, = G x V ,  which can 
be considered as a subgroup of S, and s: be the dual space of s.. Also let a linear 
operator g ( j *  jL) : s. + s: define a non-degenerate Euclidean structure on s., i.e. for 
(0, j ,  zL) E s* and for VI. V, E s,, 

(gu,xL)vl,  Vd = (&i .~ ' )V2,  VI) (2.6) 

which denotes g ( j ,  Z l ) V  = @(j, j ' ) u ,  g z ( j ,  1 ' ) ~ )  E s". 
We now consider a curve C : I --f T*S for an open interval I c R, where 6(t) E T*S 

for t E I is locally represented as 6(t) = (@,,pt12,) for 0, = (q5,,ut,mk) E S and 
pc = (mt ,  xr ,  x:) E s*. Some important dynamical systems can be expressed using the 
following right-/left-invariant Hamiltonian which is partly quadratic in mf E g: 

H(@f,f i t I$ , )  = + ( ( m i ,  x r ) + g ( x r .  x , Y ( m t 9  x r ) ) ) .  (2.7) 

This Hamiltonian can be regarded as a function on s', i.e. H ( p t )  = H(O,,  pt[$,) by 
reducing the phase space T*S to s* (consult Marsden and Weinstein 1983, Marsden et al 
1984). 

If the derivative 

of a function F : s* + R for p = (m, x .  x l )  and U E s* is expressed as 

the dynamical system defined by the Hamiltonian of (2.7) is described by the following 
LiePoisson equation: 

-- 
dt 

When U, oL are elements of vector spaces V ,  V l ,  while x .  XI are in the dual spaces V*, V i ,  
then ~ ( 4 ) "  and p ~ ( 4 ) *  is defined for q5 E B by 

(2.10) 

(2.11) 
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Using (2.10) and (2.11), the equation of motion on a co-adjoint orbit on s' is obtained as 
follows: 

that is 

(2.12) 

(2.13) 

where and (p;aHIaXI)* are defined for (U, 0.0) E s as 

For 
respectively have the following general solutions for the initial values 
Sa:  

E G such that a H p m  = @;Idr or =$,$I, the second and third equations of (2.13) 
= (mo, XO, xt) E 

XI = (P(#J*J* 'XO 

x: = IPL(4,) 1 
(2.15) 

To study this system defined by the Hamiltonian (2.7) in terms of Riemannian geometry, 
we first define (0 . f0 .  1;) E s", which is determined by Q E B for p = (mo, xo, x:) E s* 
in (2.15) as 

* * I  I 
XrJ . 

f$ = (P(Q)*J*lXO 

x: = l P ( Q )  1 xo * *I I 

which has the same form as (2.15). Thus, for Q = @t E G, 
XI = 14,  

XI - x* I -  -I 

(2.16) 

(2.17) 

This enables (2.7) to be described for go, = g(&, 2;) as follows: 
-I -1 H.(@l,CclI$,) = ((mt,xt),g(%,>x4,) h x d  

= ( ( ~ ~ , x , ) , ~ ~ , ' ( ~ ~ , X r ) )  (2.18) 
which is quadratic in & E s, c s, though the right-deft-invariant property is removed. The 
quadratic Hamiltonian of (2.18) induces the Riemannian structure defined by the following 
metric on S, for VI ,  V, E s,: 

(Wllf, VZlO))lO i * -  - (SOVI, Vz). (2.19) 
Therefore, it is reasonable to expect that the geodesic equation defined by the Riemannian 
(Levi-Civita) connection induced by the metric of (2.19) is equivalent to the equation of 
motion (2.12). 
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Theorem. The geodesic equation on S, defined by the Riemannian (Levi-Civita) connection 
induced by the metric of (2.19) is equivalent to the equation of motion (2.12). iff the 
following initial condition is satisfied for (ml ,  xc) = go, V, E s:: 

xt = f4#  at t = 0. (2.20) 

Proof. Using the metric of (2.19), we can uniquely define the Riemannian connection v 
and the induced covariant derivative eV,,;V& on S, for VI, V2, and V3 E s, from the 
following conditions of the Riemannian connection: 

2((v31$, vv,~;vzI$,))l: ((bl:, [VII:, vzl~l))l$ + ((vzl:, rv3l:. VII~]))~: 
+((V&.[v31~. V ~ ~ $ , ~ ) ) ~ $ , - V ~ ~ $ , ( ( V I ~ ~ ,  vz1+))1o + +  

+ vzl:((v3l:* V1lo))lo + vll:((v3l:, V2lo))lo (2.21) + *  * +  

which can easily be proven when applying the conditions of no torsion and metricity. 
For gb : s, x s1 + s: defined by 

v31:((vll:* vzl3)l: = (gbVzV1, V3) (2.22) 

the covariant derivative at ToS. can be calculated as 

~ v , , ; V &  = $l*l[Vl, Vzl - g;'(adv,)*gaVz -g;'(adv,)"gV,'I)-g,'gbViV, 

+ g" { d g b  V*I"gV1 + g;'{g;'gkvl r g  v211:. (2.23) 

We now consider a geodesic curve 6 : I + S. such that 6(t) = @* = (GI, U?) E S,. 
For &I:, = @;I * or V,l;, = 6, *@;I E s,, the geodesic equation is 

%,,;,Vrlo, * - 0  - (2.24) 

and can therefore be described as 

I? i ${-g;'(adv,YgeV, - g;'(ad~,)*goV,l 

+ ~I-g,'g~VrV, +g;'lg,'gbv,)*gav* +g;llg;'g:,V,rgmV,l =o. 
(2.25) 

Using (2.16) and the Hamiltonian of (2.20), equation (2.25) can be described for (ml ,  x,) = 
go,V, and IL, = (mr,  xI. 2:) E s* as 

bi = ~{(adnH./id*ILi - ( ( P ~ H J ~ x + ) * ~ $ , ,  0,O) l  (2.26) 

that is 

(2.27) 
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This is possible due to the foilowing relation: for any P = (a, 2, CjL) E s, 

On the other hand, obeys the following differential equation: 

-- 
am d t  

(2.28) 

(2.29) 

which has the same form as the second equation of (2.13). Thus, the initial condition of 
(2.20) results in xr = for t > 0. Therefore, for pr = (mr, xr, x:) E s', (2.26) becomes 

(2.30) dfir - = *ad;,,,, &I dr 

because 

aH aH, 
am am 
_ = _  

aH aH, aH. 
- ax = (a, + a;i) I .7f=z+. 

(2.31) 

U 

2.2. Prediction of instabiliiy 

The Riemannian structure on S, presents one criterion for instability of the system. For a 
parameter E E (-1, 1) and for W, = (w,. 5,. st ) E s,, 1 E S, can be deIined as 

Y:~ = e, *eeW, (2.32) 

or 

Y;~ = eEW, * 0, (2.33) 

and the right-invariant vectors Vflt,,e = ($,of, o, L z *  )Iw,,*, Wrl$,,. E Tv,,,S, are obtained as 

(2.34) 
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which satisfy 

v:l$" = KI& +E[Vtl;*,Wfl$61 ,.r (2.35) 

a = V, + e(*, & a d ,  W,) (2.36) 

since for Wp = [Adm,}"'W, E s, such that Q& = eew: * et or = e, * 

and 

(2.38) 

In particular, the vector field constructed by vectors Wll$, = W,l& on S, is called a Jacobi 
field. Letting Q$ E S, represent a geodesic on S, we obtain 

If (2.39) is the equation of motion, the following initial condition for (mf, x,", x;") = 
gyfs V: must be satisfied: 

xr E - -  - XY& a t r = D  (2.40) 

which holds not only at t = 0 but also for t > 0. This is true since x: and xp respectively 
satisfy the same differential equations as iy;c and based on their definitions in (2.15) 
and (2.16). Thus, the following condition must be satisfied: 

(2.41) 

Differentiating (2.39) by E at E = 0 enables us to obtain the Jacobi equation for the curvature 
vz13 = [+,,[;.qSr,l:~ - + ~ ~ , ~ ; , v 2 ~ ; p  i.e. 

(2.42) Q",[:,+",,:, WlG, = -&w&,, v,l;,)Kl@, i 

from which we can easily obtain 

~ ~ ~ ~ W ~ l . , , ~ W ~ l $ , ) ) I ~ , l  d2 =2(~(~",l',,wll@,~~Sr,,,,w~l.,~~l.,, 3 -  

- (( w;, 7 m r l $ , ,  Vf I$,)Vl I:,), I;, 1. (2.43) 

This equation indicates that if the sectional curvature ((Wl$,, &Wrl;,, Vzl:,)V,l$,))$,, is 
negative, then the sign of (2.43) must be positive, that is, the system is unstable in this 
sense. 
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2.3. Clarsifialion 

The mechanics described by a Hamiltonian such as (2.8) can be classified as follows: 

e.g. the motion of a rigid body: 
(i) G = S. = S 

G = S, = S = SO(3) 

and the motion of a homogeneous I-fluid: 

L; = s. = s =DD,(M) .  

(ii) G = S, 5 S 
e.g. the motion of a non-homogeneous I-fluid 

L7 = s. = D,(M) s = D”(M) x F(M). 

(iii) G $ S, = S 
e.g. the motion of a heavy top (a top under gravity): 

G = SO(3) S, = S = SO(3) x E3 

and the motion of a homogeneous I-MHE fluid 

G = D,(M)  S, = S = D,(M) x A ’ ( M ) .  

(iv) G 5, S, 5 S 
e.g. the motion of a non-homogeneous I-MHD fluid: 

P = D,(M) S, = D,(M) X A’  (M) S = D,(M) x A’ (M) xF(M)  

and the motion of an isentropic fluid: 

G = D(M) s, = D(M) x F(M)  s = Z),(M) x P(M) x F(M)  

and the motion of an isentropic MHD fluid: 

6 = D ( M )  
S = DD,(M) X A ’ ( M )  X P(M) x P(M). 

S. = D(M) x A ’ ( M )  x F(M) 

3. MHD fluid motion 

3.1. Formulation 

First, we apply the method in section 2 to the motion of an isentropic MHD fluid on a 
3-manifold M, in which the corresponding Lie group is a semidirect product of D(M) with 
A ’ ( M ) ,  F(M) (the space of Cm functions on M), and one more P(M), i.e. 

Z ( M )  = D(M) x A ’ ( M )  x F ( M )  x 3(M). (3.1) 
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For VI  = (@I, h l ,  f ~ ,  gl), lyz = (@z, hz, fz, gz) E Z ( M ) ,  the product of two elements of 
Z ( M )  is defined as follows: 

*I * ~ z = ( @ ~ . h i . f i , g i ) * ( ~ z . h z , f z , g i )  
= (@I 0 @z, @;hi + hz, @;fi + fz, @;SI + gz) (3.2) 

where ~* denotes the pull-back by @ E D ( M )  and the unit element of Z ( M )  can be denoted 
as (e. O,O, 0) E Z ( M ) ,  where e E D(M) corresponds to the identity map from M to itself. 
Moreover, for a function F : Z ( M )  + R, the right-invariant vector VI; for V E Z(M)  can 
be defined as 

where V is an element of i ( M ) ,  being the Lie algebra of Z ( M ) .  For VI, Vz E i ( M ) ,  the 
commutation bracket becomes  VI^;, Vzl;] = -[VI. V&. Thus, a right-invariant vector 
Vl&o,oj at Tt.,o,o,ojZ(M) can be identified with the corresponding element of i+(M) ,  being 
the right Lie algebra of Z ( M ) ,  with a Lie bracket that is the negative of that of i ( M ) ,  and 
also with the corresponding set of a vector field, a function, one more function, and a 1-form 
on M, i.e. 

vi;.o,o,oj = (U, H, U ,  w)~;,,,,,,, = ( H ~ ( x ) ~ x ~ ,  ui(x)ai, u w ,  W ( X N  (3.4) 

where a; and dr' are, respectively, the bases of T,M and TFM. Thus, a right-invariant 
vector VI; E T*Z(M))  obtained by the right translation of V[;,o,o,o) by V E Z ( M )  can be 
represented as 

(3.5) 
The commutation bracket for VII; = ( u ( ( x ) a , ,  Hli(x)dxi,  UI(X), W~(x))l; and Vzl; = 
(ui(,(x)ai, H2i(.r)dxi, UZ(X),  W?(x))l; E T*Z(M) becomes 

VI;  = (U, U.  w, H)I; = (ui(x)ai, H;(x)&;. u ( x ) ,  w(x))I;. 

[v,i;, vZi;i = o ; a i ,  ~ ~ a ~ i , t , ~ , ~ ~ ~ d ~ J - t , , , ~ ~ ; ~  dui,~:ajuz(~) 

- uiaJul (x) ,  U ( ~ , W ~ C X )  - U ~ ~ , W ~ ( X ) ) I ;  (3.6) 

Introducing a natural pairing defines an element of T$Z(M),  which can be denoted for 

(3.7) 

where Lu,a, denotes the Lie derivative by u'aj. 

\Ir E Z ( M )  as 

PI; = (m,  B ,  p,u)l;  = (U, @mj(X)&j ,  B,,(x)dn' A &', v,P(x), w(x))I;  
equation (3.7) physically means the set of momentum density, magnetic induction field, 
mass density and entropy density. 

We now consider a curve : I + T*Z(M) ,  where ?'(I) E T*Z(M) for I E I is locally 
represented as ? ( t )  = (V,, E T*Z(M). For the thermodynamic internal energy 
U ( p ( x ) ,  U (I)), the following non-quadraic right-invariant Hamiltonian defines the motion 
of an isentropic MHD fluid (see Marsden et al 1984): 

H ( v ~ ,   fir^;^) $ u,Pt(X)-'gi'(x)mti(x)mlj(x) 

(3.8) 
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where gij(x)gip(x) = 6; (: 8; = 1 for i = j ,  8; = 0 for i # j )  and the magnetic 
permeability is taken to be unity. As a result, the equation of motion for this fluid can be 
obtained as the equation of motion on the co-adjoint orbit on i*(M). 

To obtain a quadratic Hamiltonian instead of (3.8) using the same method as in 
section 2.1, we consider a semidirect product group L ( M )  defined as 

&(M) = A ’ ( M )  x D ( M )  x F(M) (3.9) 

which can be regarded as a subgroup of Z ( M )  by identifying V = (@, h,  f) E ZJM)  with 
(I), h,  f, 0) E Z(M) .  A right-invariant vector VI; E T*Z(M)  can be described as 

VI; = (U, H, U)[; = (d(x)ai, Hi(x)dr’.  U ( X ) ) ~ ; .  (3.10) 

For the Jacobian J $ ( x )  = det(aI)(x)j/ax’) at V = (I), h,  f) E T&(M), the mass 
density, entropy density and internal energy can be obtained as the functions on M, i.e. 

mass density: 

entropy density: Q ( x )  = uo o @-‘(x)J*-~(x) (3.11) 

internal energy: 

& ( x )  = poo I)-’(x)J*-l(x) 

& ( x )  = O(p&), u y ( x ) )  

where p&) and U&) are, respectively, the initial m a s  density and initial entropy density, 
and internal energy only depends on p p ( x )  and q , ( x ) .  For a function 

Q&) = a ( / % ( x ) )  = & W O & )  

on M and a right-invariant I-form 

/IrIV, = ( v x  ~ m , j ( x ) d r ’ , ~ , i , ( x ) d r ~  A & ’ . ~ ~ P ~ ( ~ ) ) I V ,  E G,s(M) 
at Y, E Z ( M ) ,  we can define the following Hamiltonian: 

H W ~ ,  pLr15,) = i( J ,  u,ph(x)- lg i j (x)mi i (x)mrj(x)  

B,i j (x)dx’  A ~ X ~ A  *(Bt i j (x)dXi  ~ d d )  
+ J ,  

(3.12) 

which is quadratic in E T*,Z(M) though no longer right-invariant. If .E$, = p,, then 
(3.12) has the same form as (3.8). and m,j (x) .  B,i ,(x),  and p, (x )  physically correspond to 
momentum density, magnetic induction field, and mass density, respectively. 

For 

vIi; = ( U ~ , H ~ , U ~ ) I ;  = (~j(x)ai,HIi(X)dxi,ul(x))i; 

VAU, = (uZ, H ~ ,  udi; = (u ; (x )a i ,  & ( x ) d r i ,  u,(x))I; E T*z,(M) 
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we can endow Z ( M )  with a Riemannian structure by introducing the following metric 
corresponding to (3.12): 

((Vil;. VZI;))I; = P*(x)v,gij(x)vl(x)v:(x) -t S, *(Hir(x)dr') A Hzj(x)dxi S, 
+ Z S ,  ~ x a * ( ~ ) U l ( X ) u Z ( ~ )  (3.13) 

which defines a one-to-one correspondence between a right-invariant 1-form 

PI; = ( ~ ~ 8 m , ( x ) d r ~ ~ B i j ( x ) d r ' A d r ' , ~ , p ( x ) ) l ;  E T&(M) 

and a right-invariant vector 

VI; = (uj(x)aj, ~ ' ( x ) d r ~ ,  u(x))I; E T,Z(M)  

as 

pl ;  = ( u , ~ m ~ ( x ) d x j , E i j ( x ) d r ' A d r ' , ! ~ ~ B ( x ) ) l ~  

= (ux 8 ( P ~ ( ( X ) g ( x ) , k u k ( x ) J d r j ,  *(Hi(x)bi) ,  uz{~+(x)fi(x)l)l;, (3.14) 

Then, if U* = U (or p+ = p), VI; E T&(M) represents the set of velocity, internal 
energy and magnetic field. 

Under the conditions of the Riemannian connection of (2.21), the metric of (3.13) 
uniquely defines the Riemannian connection 0 and the induced covariant derivative 
?v,,zV~l; on T * Z ( M )  for V1l; = (U]. HI, U&, VZI; = (UZ. Hz, Wl;, and V3I; = 
(u3, H 3 ,  U3)l; E TwT&!4). When the metric tensor on M is gj&) = Sj, (where 8 j k  is 
Kronecker's delta) for any x E M, the covariant derivatives on T*Z(M)  can be calculated 
for 

and 

using Green's theorem, i.e. 

(3.15) 
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This calculation is made possible by taking the advantage of the fact that (3.3) and (3.13) 
give the following relation: 

V~IG((V~IG, V~IGV))IG = - 1 ~~aj(~:p~(x))gij(x)~;(~)~:(x) 
M 

+ 2 S ,  ~ , ~ ~ ( x ) a j ~ ~ : u ~ ( x ) ~ z ( * ) ) .  

Now, let us consider a geodesic curve 6 : R -+ L ( M )  such that 6(t) = YI = 
(ql, h ,  f i )  E Z ( M ) .  For V,IG, = \t, * YF'I;, = (U:, HI, U l ) l ,  E Td . (M) ,  the geodesic 
equation is 

",U, VAG, = 0 (3.16) 

and can therefore be described for Et = & , Cl = e,, , at = a*, , PI = j3,, , and y, = yq, as 

aw, I 1 1 - +U,. V W ~  - r ( V .  H,)Hi - ,(V x H I )  x HI + ~ a i ( P l U t U , )  = 0 
at PI PI P* 

_ _  aH1 H I .  VW, + W: . V H t  + H,(V . w C )  = 0 
a t  

a ut 
- + V I .  vu, +(E - 1)UIV. w, = o  
at 

(3.17) 

while the conservation laws of mass and entropy are satisfied due to (3.1 I): 

(3.18) 

(3.19) 

aijI - + VEIU, = 0 at 
a el - + velu, = 0. 
at  

If no magnetic monopole exists at I = 0. i.e. 

V . H ( x )  = 0 for any x E M at f = 0 

and if, for the internal energy VI = UV,, 

(3.20) 

r i , ( x )  = uI(x) for any x E M at t = 0 (3.21) 

then equation set (3.19) becomes the following equation set representing the motion of an 
isentropic MHD Ruid: 

aw, 1 I - + ~ t  .VWI - -(V x HI) x HI + -VPt = O  
a t  PI PI 

(3.22) 

a u, p, - + wt. vu, + -v.w, = o  
at  PI 
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where the pressure P,(x) satisfies the following condition: 

(3.23) 

which is consistent with the first law of thermodynamics. It should be noted that the 
condition of (3.20) and the evolution equation of the magnetic field in (3.17) lead to 
V .  H = 0 for I > 0, and that (3.21), (3.18) and (3.19) result in G , ( x )  = U,@) for 
f > 0. 

When wI is independent of the entropy density U,, equation set (3.22) represents the 
equation of motion for a barotropic fluid, and the function U, no longer represents the 
intemal energy. In this case, the conservation law of entropy (3.19) does not have to be 
satisfied, while (3.18) is still valid. 

When the following condition is satisfied, (3.22) becomes the equation of motion for 
an isentropic fluid: 

H(x)  = 0 for any x E M at z = 0. (3.24) 

To obtain the non-homogeneous I-fluid motion from the covariant derivatives of (3.15). 
the weighted Hodge decomposition theorem (introduced by Marsden (1976)) is first used to 
define an operator Pq which orthogonally projects VI; = (v'(x)ai,  Hi(x)dx', U(X)& E 
T q S ( M )  onto TWZu(M) for Y = (9, h)  E Z,(M). namely 

where the Cm function Q : M -+ R is defined such that 

- 
Next, the operator of (3.25) projects the covariant derivatives VVll;V& of (3.15) on 

ToZ(M) onto ToZJM) at 0 E Z,(M) c Z ( M )  for V,, Vz E i,(M) (for i,,(M): the Lie 
algebra ofZ,(M)), which enables us to obtain the covariant derivatives 6vl,V10 E ToZu(M) 
as 

+vl,vle = Po[+vl,vl;l. 

The resultant geodesic on Z,(M) then represents the equation of motion for a non- 
homogeneous I-MHD fluid, which is, in fact, the equation of motion for a non-homogeneous 
I-fluid under the initial condition of (3.24) (see Ono (1994) for an alternative formulation 
of the motion of a homogeneous I-fluid or I-MHD fluid). 

Finally, it should be noted that using the covan'ant derivatives of (3.15) gives the 
curvature tensor R of U M ) :  

(3.26) 
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3.2. A simple example 
To apply the presented method, let us consider as a simple example the motion of an 
isentropic gas with no magnetic field present. The equation of motion becomes 

avl 1 
- +v, .vu, + -vp, = o  
at PI 

a v, PI - +v,  .vu, + -v.v, 
at  PI 

0 

where the pressure P, ( x )  is defined as 

(3.27) 

(3.28) 

As shown in (3.22), the equation of motion can be obtained as the geodesic on the following 
Lie group: 

(3.29) 

For N > 2, the equations of motion in (3.27) have a steady-state solution set 
(u:(x)aj, V , ( x ) )  = (d(x)aj ,  U) satisfying the following incompressibility condition: 

ZH=O(kf) = D ( M )  x F ( M ) .  

v . v = o  
p,(x)  = p(= constant). 

(3.30) 

For example, when M is a two-dimensional flat torus, the following state solution satisfies 
(3.31): 

u ’ ( x )  = kzsin(k1.x + kzy)  

& x )  = -kl sin(k1.x + kzy)  

P r o )  = P 

(3.32) 

and 

which is also a solution to the evolution equation of an I-fluid, being unstable because of 
its non-positive sectional curvatures on Z?+(M) (see Arnold 1978). Now, considering the 
flow of a gas with heat capacity ratio y = C,,/C,, we have 

t PNY - 1)VG+ WI ’ Vu12 - p(w, .  Vv)ZJ 

which is positive when w l ( x )  = C , U ’ ( X )  for a scalar cI. 
On the other hand, from the condition of (2.41), st develops as 

a 5, - + U ‘ VSt + CpY-’(v ’ w r )  = 0, 
a t  

(3.33) 

(3.34) 
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4. Conclusions 

The theorem presented showed that Lie-Poisson systems for semi-direct product groups can 
be described in terms of Riemannian geometry. Although the theorem was only applied 
to a MHD system having isentropic flow, it is expected to have applications to other Lie- 
Poisson systems so as to enable their nonlinear phenomena to be investigated without using 
a perturbation method. 

When M is an N-dimensional flat torus, the method employed for MHD fluid motion can 
easily be described in terms of Fourier components. However, use of ordinary coordinate 
systems to calculate the covariant derivatives of (3.15) and curvature tensor of (3.26) is 
considered more beneficial than applying the Fourier series, while the reverse is true for 
I-fluid or I-MHD fluid motion (see Arnold, 1966, 1978, Ono 1994). 

It should be realized that the method utilized is quite different from the Jacobi- 
Maupertuis method, which can also describe Hamiltonian systems in terms of Riemannian 
geometry. (For further details consult Abraham and Marsden (1978), and for its application 
to N-body problems using numerical simulation see Pettini (1992)) Their method, however, 
requires changing an initial parameter to another time parameter in order to obtain the 
equation of motion as the geodesic equation, whereas no such parameter switch is needed 
by the utilized method. 

It is expected that the methodology described will enable conventional canonical 
Hamiltonian systems to be represented in terms of Riemannian geometry. Towards this 
end, such an extension is being developed. 
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